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Abstract. Consequences of the constraint of SU(3) colour singletness of quark-gluon plasma are studied.
This restriction increases the free energy barrier for the formation of hadronic bubble in supercooled phase
and influences significantly the dynamics of the initial stage of quark-hadron phase transition. It also
introduces terms dependent on the volume occupied by the plasma in the energy density and the pressure.
These modifactions vanish in the limit of an infinite volume. The last stage of the hadronization of the QGP
likely to be formed in relativistic heavy ion collisions is necessarily characterized by a decreasing volume
containing the quark matter, and thus these corrections become important. The nucleation of plasma
droplets at AGS energies is also seen to be strongly affected by the requirement of colour singletness, and
the choice of prefactor.

1 Introduction

The success of the quark model, the quantum chromo-
dynamics (QCD), and the non-observability of the free
partons (q, q̄, g) has entailed the concept of confinement.
QCD, the theory of strong interactions, is not perturba-
tive at large distances. Thus, the confinement itself can
not be treated perturbatively. There are reasons to be-
lieve that the confinement of partons inside hadrons may
not survive collisions between heavy nuclei at relativistic
energies. In such collisions, the two nuclei masquerading
as clouds of space and time like partons pass through each
other, leaving behind a high density plasma of quarks, an-
tiquarks, and gluons (QGP) [1] in their wake, in the region
between the two receding fronts of the leading particles.
This plasma expands and cools, the energy density be-
comes low enough and a phase transition to a hadron gas
takes place around the critical temperature, TC . A dy-
namic treatment of this phase transition is a problem of
considerable interest.

An understanding of the QCD phase transition re-
quires a knowledge of the equation of state as well as
the kinetics of phase transition. If QCD has a first order
phase transition, it may proceed with a supercooling of
the QGP followed by a nucleation and growth of hadronic
bubbles [2,3], releasing the latent heat as the phase transi-
tion progresses. In a superheated hadronic matter, on the
other hand, nucleation of a QGP droplet may also proceed
similarly.

For a first order phase transition the rate for hadronic
bubble/plasma droplet nucleation can be estimated in the
frame work of homogeneous nucleation theory [4]

I = I0 exp(−4F ?/T ) , (1)

where I0, which has the dimension of 1/fm4 is called the
prefactor, T is the temperature, and 4F ? is the change in
free energy accompanying the formation of a critical size
hadronic bubble/plasma droplet. These dimensional ar-
guments were used in a large number of studies in the
past to replace I0 with T 4 or T 4

C . This unsatisfactory
state of affairs was corrected recently by Kapusta and
Csernai [5]. They computed the dynamical prefactor in
a course-grained effective field theory approximation to
QCD. This dynamical factor influences the growth rate
and statistical fluctuations and also accounts for the avail-
able phase space.

Csernai et al. [2,3] have also used a nucleation rate
equation with this realistic dynamical prefactor to study
the time evolution of expanding QGP as it converts to
hadronic matter. They noted a substantial deviation from
an idealized Maxwell construction that has often been em-
ployed as a model of hadronization [6]. Obviously, such an
idealized phase transition assumes a QCD nucleation rate
which is much larger than the rate of expansion. This is
not necessarily true.

In all such studies, QGP is generally described as an
ideal gas of quarks, antiquarks and gluons, essentially de-
scribed by the Stefan-Boltzmann law. Lattice calculations
[7] have provided ample evidence that even at fairly high
temperatures, colour singlet objects like multi-quark clus-
ter (qq̄, qqq, q̄q̄q̄, · · ·) propagate in the plasma. One may
account for this ‘interaction’ by requiring that all physical
states be colour singlet with respect to the SU(3) colour
gauge group [8–11].

It has recently been shown [12] that restricting the
quark partition function to be colour singlet of SU(3)
colour gauge group amounts to reordering the thermo-
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dynamic potential in terms of the colourless multi-quark
modes (qq̄, qqq, q̄q̄q̄, · · ·) at any given temperature. Un-
der a suitable confining mechanism, these could evolve
into colour singlet hadrons/baryons at low temperatures.
This is also in accord with the “preconfinement” prop-
erty of QCD noted by Amati and Veneziano [13] quite
sometime ago where the cascading and fragmenting par-
tons produced in hadronic collisions rearrange themselves
into colour singlet clusters which ultimately evolve into
hadrons [14,15]. These considerations convince us that
it is important to incorporate the dynamic requirement
of colour singletness of the quark-matter which “tunnels”
into hadronic matter phase space [15].

In the present work we study the consequences of the
incorporation of colour singlet equation of state for plasma
on the dynamics of quark-hadron phase transition.

2 Equation of state

2.1 Colour singlet equation of state
for a quark-gluon plasma

Consider a quark-gluon plasma consisting of ‘u’ and ‘d’
quarks, and gluons. The grand canonical partition func-
tion [9–11] subject to colour singletness can be written
as

Z(β, Vq) = Tr
(
P̂ e−βĤ

)
, (2)

where β = 1/T is the inverse temperature, Vq is the vol-
ume, Ĥ is the Hamiltonian of the physical system, and P̂ is
the colour projection operator. For a baryon free plasma,
this can be simplified after a considerable amount of group
theoretic algebraic manipulations [9,11] to give,

Z(β, Vq) =
√

3
3π

[ 8Vq

3β3

]−4
exp

[ aqVq

β3

]
, (3)

where aq = 37π2/90. Now the free energy of the baryon-
free colourless quark-gluon gas is obtained as,

Fq = − T lnZ(T, Vq) + BVq . (4)

One may now write for the energy density

eq =
Eq

Vq

=
T 2

Vq

∂

∂T
[lnZ(β, Vq)] + B

= B + 3aqT
4 − 12T

Vq
, (5)

The pressure of the above quark-gluon system is given
as

Pq = −
(

∂F

∂V

)
T

= − B + aqT
4 − 4T

Vq
. (6)

We note that the colour singletness introduces correc-
tions to the normally assumed expresssions for the energy
density and the pressure which vanish for an infinite vol-
ume. Now consider the hadronic phase arising as a result
of first order quark-gluon/hadron transition through the
nucleation of hadronic bubble in the bulk QGP. With the
passage of time, more and more of the quark matter will
get converted to hadronic matter. The later stage of the
process of hadronization will be characterized by a de-
creasing volume occupied by the quark matter. If we be-
lieve the above equations of state, the volume occupied
by the plasma can not be vanishingly small. The colour
singletness will again have important consequences for dy-
namics of the phase transition during the later stage of
hadronization.

Here, we would also like to point out that the colour
singletness has important bearing on the nucleation of a
hadronic bubble in the plasma which we will see in Sect. 3.

2.2 Equation of state for hadron gas

We model the hadronic phase as a gas of massless pions.
The energy density and the pressure of such a system can
be written as

eh = 3ahT 4 , (7)

and
Ph = ahT 4 , (8)

where ah = π2/30.

3 Supercooling and nucleation

Nucleation in a pure phase like QGP proceeds via cre-
ation of a hadronic bubble due to statistical fluctuations
in a supercooled plasma. The bubble is made up of hot
pion gas and is surrounded by colour singlet plasma of
volume, Vq = (V − Vb), where V is initial volume of
plasma. Vb = 4πRb

3/3 represents an excluded volume cor-
responding to hadronic bubble. One can think of curving
out a colour singlet piece of plasma and replacing it with a
hadronic bubble. The fields in plasma obey the bag bound-
ary conditions, staying outside the hadronic bubble [16,
17]. If the radius of the bubble is Rb, the change in free
energy can be written [11,16] within the bag model as,

4F = T ln
(
π
√

3
)

+ 4T ln
(

8
3
VbT

3
)

+ aqVbT
4

− (B + Ph)Vb + 4πRb
2σ , (9)

where Ph is the pressure of the hadron gas given in (8) and
σ is the surface free energy of the quark-gluon/hadron in-
terface. The first two terms in (9) are due to SU(3) colour
singlet restriction. They increase the barrier for 4F re-
quired to form hadronic bubble in plasma (Fig. 1). We
shall see later that it has an important effect during the
initial stage of QCD phase transition.

Recall that one can derive the critical radius (Rb
?) of

hadronic bubble by minimizing the change in free energy,
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4F , with respect to Rb. If they are too small (R < Rb
?),

they will shrink and vanish. If they are large (R > Rb
?),

they will grow. Now, minimizing 4F with respect to Rb,
one gets

12T

Rb
? − 4π(B − aqhT 4)Rb

?2 + 8πσRb
? = 0 , (10)

which will yield the critical radius of hadronic bubble Rb
?.

We have further defined, aqh = aq − ah. If the first term
in (10), which has its origin in the requirement of colour
singletness is neglected, one obtains the critical radius,
Rb

? = 2σ/(B − aqhT 4), for a nonsinglet case. Making a
substitution x = 1/Rb

?, (10) can be written as

x3 + ax − b = 0 , (11)

where a = 2πσ/3T and b = π(B − aqhT 4)/3T . The phys-
ical solution of (11) gives the critical radius of hadronic
bubble for the colour singlet case, as,

Rb
? = 3z/

(
3z2 − a2) ; z3 =

[
b/2 +

√
a3/27 + b2/4

]
.

(12)
Now, the change in free energy for the creation of a

hadronic bubble having the critical radius Rb
? is

4F? = 4F |R=Rb
? . (13)

The rate for the nucleation of hadronic phase out of
the plasma phase is usually estimated by (1) with pref-
actor, I0. As remarked earlier the prefactor, I0, has been
calculated by Csernai and Kapusta [5] in an effective field
theory approximation to QCD as

I0 =
16
3π

( σ

3T

)3/2 σηqRb
?

ξ4
q (4w)2

. (14)

Here, ηq and ξq are, respectively, the shear viscosity and
correlation length in the plasma phase, and 4w is the
difference in the enthalpy densities of the two phases. We
use the same parameter set as used in [2,3], e.g., B1/4 =
235 MeV, ξq = 0.7 fm, ηq = 14.4T 3 and TC = 169 MeV.
Next we closely follow the arguments of [2,3] to obtain the
dynamics of the phase transition.

Once the nucleation rate is known, one can calculate
the (volume) fraction of space h(τ) converted to hadronic
gas at a proper time τ . This proper time is measured in
the local comoving frame of an expanding system. For this
purpose one needs a kinetic equation which involves I as
the source. If the system cools to TC at a time τC , then
at some later time τ the fraction of the space which has
converted to hadronic gas is [2,3]

h(τ) =
∫ τ

τC

dτ ′I (T (τ ′)) [1 − h(τ ′)]V (τ ′, τ) , (15)

where, V (τ ′, τ) is the volume of a bubble at a time τ
which has nucleated at an earlier time τ ′. This also takes
into account bubble growth. How rapidly does the bub-
ble grow after nucleation? Usually a critical size bubble

is metastable and will not grow without a perturbation.
Pantano and Miller [18] have numerically computed the
growth of bubbles using a relativistic hydrodynamics. The
asymptotic radial growth velocity was found to be consis-
tent with the growth law

v(T ) = v0 (1 − T/TC)3/2
, (16)

where v0 is a model-dependent constant. We shall use v0 =
3c as it has been argued [2,3] that the (16) is intended to
be applied only as long as T > 2TC/3 so that the growth
velocity stays below the speed of sound of a massless gas,
c/

√
3. Thus the growth of the bubble can be approximated

as,

V (τ ′, τ) =
4
3
π

[
Rb

? (T (τ ′)) +
∫

τ ′

τ

dτ ′′v (T (τ ′′))
]3

.

(17)
Now one needs a dynamical equation which couples

the time evolution of the temperature to the fraction of
space converted to hadronic gas. For this purpose we use
both Bjorken longitudinal hydrodynamics and Cooper-
Frye-Schönberg spherical hydrodynamics as [2,3]. In
Bjorken model [19] the time evolution of energy density e
is given as

de

dτ
= −w

τ
, (18)

whereas in Cooper-Frye-Schönberg model [20] it is

de

dτ
= −3w

τ
. (19)

In (19) the factor of 3 appears because of the spatial ex-
pansion along three dimensions rather than one dimen-
sion. In order for an easy comparison we consider initial
conditions as in [2,3] which are likely to be achieved in col-
lisions involving two gold nuclei at RHIC energies. Thus
for longitudinal expansion we take τi = 3/8 fm/c and
Ti = 2TC . The temperature decreases as T (τ) ∝ τ−1/3

until the time τC = 3 fm/c when the temperature be-
comes TC . In the case of spherical expansion we consider
Ti = 2TC and τi =

√
2Rnucl and the temperature decreases

like T (τ) ∝ τ−1 until the time τC = 18 fm/c correspond-
ing to half density radius of a gold nucleus (For details
see [2,3]). The equations (18) and (19) are essentially the
statement of energy conservation in the respective picture
which assume kinetic equilibrium but not phase equilib-
rium. The energy density can be written [2,3] as

e(T ) = h(τ)eh(T ) + [1 − h(τ)] eq(T ) . (20)

Here, eh and eq are the the energy densities in hadronic
and plasma phases at temperature T , and similarly for w.

4 Dynamics of phase transition:
Longitudinal and spherical expansion

In Fig. 1 the free energy difference, 4F in (9) as a func-
tion of hadronic bubble radius for a fixed bag constant
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Fig. 1. The free energy difference 4F (R) for creation of a
hadronic bubble in quark-gluon plasma

(B1/4 = 235 MeV), surface tension (σ = 50 MeV/fm2)
and temperature (T = 160 MeV) is displayed. Results are
given with and without colour singlet requirement of the
system. One finds a significant increase in 4F if the con-
straint of colour singletness is imposed. We will see below
that it has important consequences on the time evolu-
tion of expanding QGP as it converts to hadronic matter
through nucleation of hadronic bubble.

In Fig. 2 we show the variation of the temperature with
proper time as the matter undergoes longitudinal expan-
sion with the initial conditions given in Sect. 3. We have
also given the results for an adiabatic phase transition for
a comparision. The value of σ used here is 50 MeV/fm2.
The general features are similar to those of [2,3].

The matter continues to cool below TC until nucleation
of hadronic bubble sets in. For colour singlet case the de-
gree of supercooling is about 30%, i.e., 12.5% more than
that for the nonsinglet case. Once nucleation and growth
of bubble start, the system reheats near TC due to release
of latent as the phase transition progresses. When tem-
perature approaches ∼0.95TC nucleation of further bubble
formation ceases off and the transition proceeds because of
growth of previously nucleated bubbles. However, the sys-
tem can not reheat upto TC because bubble growth (17)
reduces to zero as TC is approached. Recall that nucle-
ation in colour singlet case will be delayed due to increase
in height of 4F which in turn also slows down the phase
transition. This results in 10% extra entropy generation
in the processs as compared to colour nonsinglet case.

Figure 3 shows the variation of critical radius as a func-
tion of proper time for hadronic bubble undergoing longi-
tudinal expansion with and without colour singlet require-
ment. It clearly indicates that the early stage of nucleation
is characterized by a much larger critical size of nucleated
hadronic bubble (∼ 1 fm) for colour singlet case as com-

Fig. 2. The temperature as function of proper time for
a hadronizing quark-gluon plasma in a central high-energy
nucleus-nucleus collision for matter undergoing longitudinal
expansion. The initial conditions correspond to QGP forma-
tion at BNL - RHIC energies

pared to ∼ 0.5 fm for colour nonsinglet case. At later
times (≥ 12 fm/c) the critical size of nucleated hadronic
bubble remains lower until the phase transition is com-
pleted if the colour singlet requirement is implemented in
the system. In these initial studies we have not included
the modification due to bubble fusion which should be of
interest.

In Fig. 4 we show the volume fraction converted to
hadronic matter undergoing longitudinal expansion as a
function of proper time. The delay in completion of QCD
phase transition due to colour singletness is seen clearly.
As the phase transition progresses via nucleation of
hadronic bubble, the available space will be progressively
occupied by hadronic matter. We would like to make an
amusing observation here. If we believe the equations of
state for the QGP as discussed earlier ((5) and (6)), the
volume occupied by plasma can not be vanishingly small.
This necessarily implies a remnant of quark matter when
the process of hadronization is over. We find that a frac-
tion of quark matter of mass ∼ (5-10) GeV having vol-
ume ∼ 10–15 fm3 remains unconverted at the end of the
hadronization in the central region, per unit rapidity. One
can have interesting speculations about such a remnant.

In Fig. 5 we have attempted to study the dynamics
of phase transititon as a function of quark/hadron in-
terface tension σ. Recall [3] that the dynamics depends
sensitively on σ when we do not impose the restriction
of colour singletness. With imposition of colour singlet-
ness large variation in σ leaves the dynamics fairly un-
changed. The reason for this is not too difficult to iden-
tify. Note that (10) tells us that even if σ = 0, there is
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Fig. 3. Radius of critical hadronic bubbles as a function of
time, in a hadronizing quark-gluon plasma

Fig. 4. The volume-fraction of space occupied by the hadronic
matter as a function of time, in a hadronizing quark-gluon
plasma

possibility of nucleation of hadronic bubble with a critical
radius, Rb

? = [3T/π(B − aqh)]1/3. However as the nucle-
ation rate, I, itself depends on σ via its prefactor, I0 and
I = 0 if σ = 0. Thus we have kept σ = 50 MeV/fm2 as I
involves a more realistic prefactor characterized by σ.

How will these findings differ for a more realistic (3+1)
dimensional expansion of plasma? Normally, the plasma is
expected to expand mostly in longitudinal direction ini-

Fig. 5. Same as Fig. 2 with various σ values for colour singlet
case

Fig. 6. Same as Fig. 2 for matter undergoing spherical expan-
sion

tially. After a time τ ' R/cs where R is transverse radius
and cs is the speed of sound, the system is likely to expand
in transverse direction as well. We, like the authors of [3],
take the other extreme and look on spherical expansion
with the same initial conditions as in [3].

Figure 6 is similar to Fig. 2 with the exception that it
considers spherical (3-dimensional) expansion instead of
longitudinal (1-dimensional) expansion. The degree of su-
percooling is almost of the order of longitudinal one (30%)
with the prime difference that hadronization is faster in
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Fig. 7. Same as Fig. 3 for matter undergoing spherical expan-
sion

3-dimensional case. This implies that the system spends
less time in the neighbourhood of TC than otherwise. Fig-
ure 7 shows the variation of critical radius of hadronic
bubbles undergoing spherical expansion as a function of
proper time with and without colour singletness. It is clear
that the critical radius of nucleated hadronic bubbles for
spherical expansion is smaller compared to longitidunal
expansion. In Fig. 8 we show the variation of volume frac-
tion converted to hadronic matter for spherical expansion
as a function of proper time. This is also clear from this
figure that the phase transition is faster than the longitu-
dinal one. For the shake of completeness we also present
Fig. 9 for spherical expansion which shows the variation
of temperature as a function of proper time for different
quark/hadron interface values.

5 Nucleation rate of droplets
of quark-gluon plasma in hot hadron gas

The creation of QGP at AGS energies may proceed
through the nucleation of a plasma droplet in hot hadronic
gas. Here the fields in plasma obey the bag boundary con-
ditions, staying inside the plasma droplet [16]. If the radius
of the droplet is Rq, the nucleation process is, generally,
activated by the change in free energy which can be writ-
ten within the bag model [11,16] as

4F = T ln
(
π
√

3
)

+ 4T ln
(

8
3
VqT

3
)

− aqVqT
4

+ (B + Ph) Vq + 4πRq
2σ . (21)

Here, Vq is volume of the plasma droplet formed in a su-
perheated hadron gas. Usually, the nucleation rate of a

Fig. 8. Same as Fig. 4 for matter undergoing spherical expan-
sion

Fig. 9. Same as Fig. 5 for matter undergoing spherical expan-
sion

plasma droplet from superheated hadronic phase is esti-
mated from (1). Now, the prefactor [5] is given by

I0 =
κ

2π
Ω0 . (22)

The dynamical prefactor κ, determines the exponential
growth rate of critical size droplets, and is given by [21]

κ =
2σ

(4w)2Rq
?3

[
λT + 2

(
4
3
η + ζ

)]
, (23)
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Fig. 10. The free energy difference 4F (R) for creation of a
plasma droplet in hot hadronic matter

where λ is the thermal conductivity and η and ζ are the
viscosities of the hadronic phase. The bulk viscosity ζ is
very small compared to shear viscosity η and can be ne-
glected. For these dissipative coefficients we use the pa-
rameterization of Danielewicz [22]. Rq

? is the critical ra-
dius of a nucleated plasma droplet. This can be obtained
by minimizing 4F , given in (21), with respect to Rq. To a
first approximation the statistical prefactor [5,21] is given
by

Ω0 =
2

3
√

3

( σ

T

)3/2
(

Rq
?

ξh

)4

. (24)

For our purpose we use following set of parameter σ = 50
MeV/fm2, ξh = 0.7 fm and B1/4 = 200 MeV which gives
TC ∼ 170 MeV. We shall also give results for the prefactor
∼ T 4 which is used often in such studies.

As a first step, in Fig. 10 we plot the variation of 4F as
a function of droplet radius with and without colour sin-
glet restriction for three different temperatures (160, 180,
240 MeV). Due to colour singlet restriction, the height of
4F is enhanced significantly in each case. Figure 11 shows
the variation of critical radius of nucleated plasma droplet
as a function of temperature. We see that the imposition
of the colour singletness increases the critical radius by
factor of ∼ 3–5 over the range of temperatures that we
have considered here. Knowing that creating a bigger size
bubble by statistical fluctuation is considerably less prob-
able, it is not surprising that this should lead to consid-
erable suppression of nucleation rate when the degree of
superheating is small.

Figure 12 shows the variation of nucleation rate of
plasma droplets in superheated hadron gas as a function
of temperature. It is seen that the nucleation rate with
the prefactor T 4 (dashed lines) is suppressed consider-
ably when the restriction of colour singletness is imposed.
Similar finding has been reported recently in the litera-

Fig. 11. Critical radius of nucleated plasma droplets as a func-
tion of temperature in a superheated hadronic matter

ture [23] with a somewhat different expression for 4F .
The results (solid lines) with the more realistic prefactor
(22) are richer in detail. Firstly we notice that without
the restriction of colour singletness the traditional pref-
actor considerably overestimates the rate of nucleation.
With prefactor given in (22), we see that switching on the
requirement of colour singletness lowers the rate of nucle-
ation at smaller T . However, in a surprising finding, we
note that while the no-colour-singlet rate decreases with
increase of T , that with colour singlet restriction increases
and ultimately becomes larger at really high T . This in-
teresting behaviour is seen to emerge from the structure of
the prefactor (22) which in fact is proportional to Rq

?, and
Rq

? is seen to decrease with increase in T (Fig. 11). We
add here that Kapusta and Vischer [24] have recently pro-
posed a more efficient mechanism for nucleation of plasma
droplet at AGS energies which envisages seeding of the
plasma via collision of two very energetic nucleons in the
hot and dense hadronic matter.

6 Summary

Before summarizing let us briefly examine some of the in-
puts in the present work. While writing the expressions for
the gain/loss in free energy (4F ) we have included only
the volume and the surface terms. This should be valid
when the size of the plasma droplets or hadronic bubbles
is large. The prefacor we have used is valid for the situa-
tion when the size of the bubbles/droplets is larger than
the correlation length of the system (ξ = 0.7 fm). We have
seen that these bubbles/droplets have radii larger than a
fermi, and thus both these conditions are reasonably sat-
isfies.
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Fig. 12. The nucleation rate of plasma droplets as a function
of temperature, in a superheated hadronic matter. The solid
lines are with dynamical prefactor of [5] whereas those with
dashed lines are with T 4 as prefactor

Recall that the surface energy coefficient σ is zero
in the MIT bag model for massless quarks [25]. Quarks
traversing a hot medium, do acquire a thermal mass. Fi-
nite temperature lattice QCD [26] and a pure SU(N) gauge
theory [27] yield a value in the range σ ≈ 20–70 MeV/fm2.
We have thus mostly used σ ≈ 50 MeV/fm2 and the effect
of varying σ is also studied. We have not come across any
estimate of the so-called curvature term in this case. We
have verified, however, if we add a term for curvature en-
ergy in the expression of 4F for the creation of hadronic
bubble in the plasma as in [16], then the supercooling
of the plasma is completely eleminated, if we ignore the
colour singletness. We have also checked that supercool-
ing of plasma is possible if the colour singlet restriction is
imposed along with curvature contribution. However, for
plasma droplet in hot hadronic gas the degree of super-
heating will be enhanced than otherwise.

In brief, the theory, proposed recently [2], to describe
the dynamics of hadronization has been generalized to
study the consequences of the requirement of colour sin-
gletness of QGP which may be produced in relativistic
heavy ion collisions. It is shown that hadronization of
longitudinally and spherically expanding plasma may be
slowed down due to this requirement. While there is no
production of entropy for an adiabatic phase transition,
the entropy increases by about 30% in the treatment of [2].
The requirement of colour-singletness introduced in the
present work enhances this entropy by an additional 10%
and also increases the degree of supercooling. We note an
interesting possibility; a small fraction of QGP may not
hadronize at all.

We also find that the nucleation of a plasma droplet in
a superheated hadronic matter is suppressed at low tem-

perature (T ≤ 220 MeV), but it is enhanced at higher
temperature (T ≥ 220 MeV) when the colour singlet re-
striction of QGP is accounted for. The decrease at T ∼ 170
MeV is found to be by four orders of magnitude while the
enhancement at 250 MeV is by one order of magnitude.

It would be of interest to consider a generalization of
this study to the case of non-equilibrated plasma which
hadronizes into a hadronic matter having a richer equa-
tion of state. A (rather) crude result may be obtained by
keeping all other parameters like TC , σ, η, etc. fixed to
their present values. This we feel, may not be quite justi-
fied.
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